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A Study on the Effective Hydraulic Conductivity of 
an Anisotropic Porous Medium 
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Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is 

obtained for steady two-dimensional  flows employing stochastic analysis. Flow equations are 

solved up to second order and the effective conductivity is obtained in a semi-analytic form 

depending only on the spatial correlation function and the anisotropy ratio of the hydraulic 

conductivity field, hence becoming a true intrinsic property independent of the flow field. 

Results are obtained using a statistically anisotropic Gaussian correlation function where the 

anisotropy is defined as the ratio of integral scales normal and parallel to the mean flow 

direction. Second order results indicate that the effective conductivity of an anisotropic medium 

is greater than that of  an isotropic one when the anisotropy ratio is less than one and vice versa. 

It is also found that the effective conductivity has upper and lower bounds of the arithmetic and 

the harmonic mean conductivities. 
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I. Introduct ion  

It is now generally accepted that hydroge- 

ologic properties such as hydraulic conductivity 

of aquifers are highly heterogeneous, i.e., they 

vary significantly over a wide range of spatial 

scales, and hence flow and transport  by ground- 

water are governed by this large-scale spatial 

heterogeneity of natural formations (Dagan, 1989; 

Gelhar, 1993). It is practically impossible to map 

the exact spatial distribution of the hydraulic 

conductivity field because this would require an 

enormous amount of data acquisition through 

such methods as drilling and well tests entailing 

in alteration of the aquifer properties. It is this 
highly heterogeneous nature that led to the appli- 

cation of stochastic approach in groundwater 
flow and solute transport analysis (Dagan, 1987). 

However, in many applications where knowledge 

of an average response is sufficient for manage- 

ment and decision making such as in conta- 
minated soil remediation (Joo et al., 1998), this 
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costly effort is unnecessary. 

The average response of flow in aquifers can 

be characterized by the effective hydraulic con- 

ductivity, Ke::. To qualify as an effective property 

with general applicability, Ke:: must be an in- 

trinsic property, i.e., it should be a function of  

the hydraulic properties of the aquifer itself and 

not of the hydraulic head gradient. The effective 

conductivity provides primary statistical informa- 

tion and in cases where the flux is stationary, the 

average discharge can be used to estimate the 

space average of the flux. Computat ion of the 

effective hydraulic conductivity in heterogenous 

media requires knowledge of the statistical mo- 

ments of the hydraulic conductivity and its spatial 

covariances. 

In many cases porous media such as sedi- 

mentary rocks, soils and manufactured material 

such as catalysts are anisotropic in their resis- 

tance to the flow of fluids and solutes. The 

anisotropy stems from the process by which the 

porous medium is formed. For  example, sedimen- 

tation process in the case of sedimentary rocks 

or soils and extrusion or pelleting process in the 

case of catalyst pellets (Friedman and Seaton, 

1996). Flow and transport through anisotropic 

porous media have many engineering applica- 

tions in such fields as subsurface hydrology, 

petroleum engineering and chemical engineering. 

The purpose of this study is to derive an effective 

hydraulic conductivity of an anisotropic heter- 

ogeneous porous medium using the method of 

small perturbations in the framework of stoc- 

hastic analysis. 

2. Mathemat ica l  Statement  of  the 

Problem 

We consider a case of steady, two-dimensional  

flow in the horizontal saturated porous formation 

without recharge. Our starting point is the mass 

conservation equation without source or sink 

terms expressed as the following ; 

V" q ( x )  = 0  (1) 

and the Darcy's law ; 

q(x) = - K ( x )  VH(x) (2) 

where q is the specific discharge, K is the 

hydraulic conductivity, H is the hydraulic head 

and X=Xg is the Cartesian coordinate. The spec- 

ific discharge is related to the flow velocity 

through the following ; 

U (X) - -  q (x) (3) 
n 

where n is the porosity of the medium. Here and 

subsequently, boldface letters denote vectors. 

Natural formations are highly heterogeneous 

and it is common to model the hydraulic con- 

ductivity and its natural logarithm Y = l n  K as 

a spatial random function (SRF) in order to 

account for their irregular spatial variations and 

for the uncertainty of  their distribution. Fol low- 

ing numerous findings from field studies (e.g., 

Freeze, 1975; Hoeksema and Kitanidis, 1984), 

the hydraulic log-conductivity Y is treated as a 

normal SRF and is modeled as the sum of its 

expected value, mr ,  and a small scale local fluc- 

tuation Y ' ( x )  ; 

Y(x) = ( Y ( x ) } +  Y'(x) =mr+ Y'(x) (4) 

and for simplicity it is assumed to be stationary, 

i.e., of a constant mr.  

Hence the log-conductivity is characterized by 

its mean m r  (angled brackets denote expected- 

value operator) and the spatial covariance func- 

tion, 

Cy(x, y )=(Y ' ( x )  Y ' (y ) )=Cr(r)  (5) 
= ~ p r ( r )  

where r = x - - y  is the separation vector, ~ is the 

variance of Y and py is its correlation function. 

Under the assumption of stationarity m r  and ~r  

are constants while Or is a function of  the sepa- 
ration vector. The effects of porosity variations 

have been found to be secondary compared to 

those of hydraulic conductivity variations (Naff, 

1978) and therefore is treated as a constant in this 

analysis. Combining Eqs. ( l ) -  (4) leads to the 

following equation for the flow field ; 

V2H (x) = - - V  Y ' ( x )  " V H ( x )  (6) 

which is a stochastic partial  differential equation 

due to the randomness of Y ' ( x ) .  
The problem is to solve Eq. (6) for H(x) with 
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different structures of Y'(x) .  Equation (6) 

depends on the standard deviation of the log 

-conductivity av and tends to a deterministic 

solution as o'r ~ 0, since the geologic formation 

becomes homogeneous at this limit. The 

hydraulic head field H(x) is expanded in series 

up to order d r  2 as the following ; 

H (x) = H 0 ( x ) [ I ]  +Hi(x)[at] (7) 
+H=(x) [~/] + O[~?] 

where the term in brackets represents the order of 

magnitude and the solution to Eq. (6) is sought 

using the method of small perturbations. We seek 

here the solution up to order ~:flv. 

Substitution of Eq. (7) into Eq. (6) leads to the 

following sequence of equations stated in the 

ascending order of magnitude up to O[o'va]. 

O [ l ]  : V 2 H 0 ( x ) = 0  (8a) 

OEar]  : V Z H I ( x ) = - V Y ' ( x ) ' H o ( x )  (85) 

O[cfly] : V ~ H 2 ( x ) = - V Y ' ( x ) . H x ( x )  (8c) 

For  the boundary condition we take the head 

gradient at some point in the flow domain given 

as ; 

( V H ( ~ ' ) ) = - J = -  (Jl, 0) (9) 

where for convenience the coordinate axis x, is 

aligned in the direction of the mean flow. In this 

study we assume the flow domain to be unbo- 

unded. Although actual aquifers are obviously 

bounded, our analysis and solution based on 

the assumption of infinite domain are applicable 

to situations of finite domain as long as the 

domains under consideration are sufficiently re- 

moved from the boundaries (Rubin and Dagan, 

1988). When we limit our solution of the flow 

field in heterogeneous formations up to order c~v, 

Eqs. ( 8 a ) -  (8c) and (9) constitute the entire set 

of equations that need to be solved. Our model 
can be summed up as an unbounded horizontal 

plane of saturated porous formation and we seek 

a steady, f irst-order solution in the variance of 

Y under the assumption of stationary and aniso- 

tropic conductivity field in the framework of 

stochastic analysis using the method of small 
perturbations 

3. S o l u t i o n  U s i n g  the  M e t h o d  

of  P e r t u r b a t i o n s  

3.1 Flow field solution and effective 
conductivity 

Taking the expected value of the order one 

hydraulic head equation (Eq. (8a)) with boun- 

dary condition of Eq. (9) leads to the following ; 

(Ho(x) )= - J (10) 

and subsequently the first order equation for Ht 

becomes 

Vzr_r _ r a Y "  11x--J1 ~ 11) 

with the solution given by 

y '  , a (y)  , 
Hi(x) =yt f G ( x - y ) ~ a y  12) 

where G is the Green's function for the Laplace 

equation and integration is performed over the 

entire flow domain. The second order equation 

for Hz is solved and after much tedious calcula- 

tion its mean is tbund to be identically zero, i.e., 

( / /2  (x)  > = 0 .  

Having solved the flow problem in terms of the 

hydraulic head, the mean velocity up to second 

order is obtained from a SRF for the velocity 

using Eqs. (2) and (3) a s ;  

( U ) = - e " ~ n  {(H0)+~flv((VHz) 
(13) 

+ ( Y'V H1) +-~( Y'2V Ho) ) } 

and when Eqs. (10), (12) and ( H 2 ( x ) ) = 0  are 

substituted into Eq. (13), second order approxi- 

mation of the mean velocity is obtained as the 

following employing the Fourier transform (FT) 

technique ; 

o 1 

with r] given by 

_ ~ _ . .  15) 

where bY(k) represents the FT of p r ( r )  and k 

is the wave number vector with kZ=k~+k~ and 

dk=dMdk2. Now Eq. (14) can be rearranged to 
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read as ; 

( U (x) } =lnKexxJ~ (l 6) 

which becomes the defining expression for the 

effective conductivity Ke1,- and for our problem 

can be expressed as the following ; 

Kefz : em~{ I + ( :~y ( l -  7])} (17) 

with 7] expressed as Eq. (15). 

3.2 Anisotropic structure of hydraulic 
conductivity 

The hydraulic conductivity of isotropic aqui- 

fers are represented by isotropic correlation 

functions which depend on the distance r : [  r l 

only and their FT depends on the wave number 

k : l k ]  (Freeze, 1975). However, due mainly to 

stratification, aquifers may display anisotropy 

and in line with Gelhar and Axness (1983) we 

assume that the anisotropy of the hydraulic con- 

ductivity is manifested in the scaling of the log- 

conductivity correlation function. Thus an aniso- 

tropic correlation function can be reduced to an 

isotropic one by rescaling the space coordinates 

as following ; 

r i = r J I r l  r ~ = r z / I ~  A=Ivz/Ir~ (18) 

where Iv1 and I~z are the log-conductivity inte- 

gral scales in the r~ and r2 directions respectively 

and their ratio A is defined as the anisotropy ratio. 

For example, /t=1 represents a statistically iso- 

tropic heterogeneous porous medium. 

In this study we adopt an anisotropic Gaussian 

correlation function which in physical space coor- 

dinates is expressed as the following ; 

7/" r2 

r '2= (n/Ivl) 2+ (r2/I~) 2 

and its FT becomes 

~(k) =I~lI~bY(k') 
2 V ~ l  , }1 (20) = [v,Irz~exPL- zr ~ (klIvl)" + (kzlv2) 2 

where k'  is the dimensionless wave number, 

{ (kl lvl)2+ (kzlrz)z }~/2. This expression is used in 

Eqs. (15) and (17) for the evaluation of the 

effective hydraulic conductivity. 

4. Resul ts  and Conclus ions  

Using the method of small perturbations in the 

stochastic analysis we obtained a semi-analytic 

expression for the effective hydraulic conductivity 

of a statistically anisotropic heterogeneous porous 

medium. The effective conductivity is an intrinsic 

function independent of the flow field and de- 

pends only on the statistical spatial distribution 

characteristics. In this study an anisotropic Gaus- 

sian correlation function was used. 

4.1 Effective hydraulic conductivity 
The dependence of the function (~) defined in 

Eq. (15), on the anisotropy ratio (,~) is presented 

in Fig. 1. The result is obtained by numerical 

integration of Eq. (15) with FT of an anisotropic 

Gaussian correlation function. The function ~7 is 

0.5 at ,~=1, which corresponds to the isotropic 

heterogeneous porous medium and hence the 

effective conductivity reduces to K e / . f : c  mY, the 

geometric mean o f K ( K c = e x p  [<Y(x)>] =em'') 
(Dagan, 1989). It can also be seen that r] is less 

than 0.5 when A_< 1.0 and greater than 0.5 when 

A_>I.0 with limits of zero as A- - '0  and 1.0 as 

A---, co. From these characteristics of r/ and the 

Fig. 1 
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defining expression o f  the effective conduct ivi ty  

(Eq. (17)),  we see that tfe/s approaches the 

arithmetic mean as/1 ~ 0 ; 

l imKess=Kc( l+dv2/2)  =KA (21) 
, t~0 

and the harmonic  mean as /1--~ oo. 

lira KeH = K c  ( 1 - f v / 2 )  = K .  (22) 
2 - - c o  

Thus we can conclude that the l imiting be- 

haviors of  the effective conduct ivi ty  for an 

anisotropic medium are similar to those of  a 

stratified formation.  It has been shown by Da- 

gan (1989) that for an isotropic bedding, the 

effective conduct ivi ty  has the limits of  arithmetic 

mean when the flow is parallel  to bedding and 

harmonic  mean when the flow is normal  to 

bedding. 

Figure  2 depicts the ratio of  the effective 

conduct ivi ty  Keys to the geometric mean, Kc 
(effective conduct ivi ty  of  an isotropic medium) ,  

as a function of  the anisotropy ratio for several 

log-conduct iv i ty  variance values. In Fig. 2 (a) are 

presented the ratio for variances less than one and 

in Fig. 2(b) for variances greater than one. Here 

we can verify that the effective conduct ivi ty  of  an 

anisotropic medium reduces to the geometric 

mean of  an isotropic one when A =  1. Also,  Keys is 

found to be greater than Kc  f o r / 1 ~  1 and less than 
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Ka for ,,t_>l as predicted from Fig. 1 and devia- 

tion from the geometric mean is found to be 

greater as the variance increases and as the 

anisotropy becomes more severe, i. e., the m o r e / l  

deviates from isotropic case of  one. 

In Fig. 3 are presented the ratio Kess/Kc as 

function of  the variance for several values of  the 

anisotropy ratio. It is clear that Keys has an upper 

bound of  arithmetic mean as ,4--~ 0, correspond-  

ing to a perfectly layered formation parallel  to the 

mean flow and a lower bound of  harmonic  mean 

as A--, oo, corresponding to a perfectly layered 

formation normal  to mean flow. This result is in 

agreement with the general theory which states 

that the arithmetic mean and the geometric mean 

are the best upper and lower bounds respectively 

for an anisotropic medium (Dagan,  1989). The 

approximate  solut ion for Keys, based on a pe- 

r turbation method where we assume small stand- 

ard deviat ion 0"r as employed in our  study, can 

be applied up to 6 7 = 2 .  Beyond a variance of  

two it predicts a physically impossible negative 

hydraul ic  conduct ivi ty  in the limit A---, oo. There 

are many evidences which suggest that the results 

of  small var iance of  log-conduct iv i ty  pertur- 

bat ion analysis can be applied to situations where 

the variances are not so small (e.g., Salandin and 

Rinaldo,  1990; Deng and Cushman,  1998). 
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4.2 Conclusions 

In this study an effective hydraulic conductivity 

of a statistically anisotropic heterogeneous me- 

dium is obtained for steady, two-dimensional 

flow through stochastic analysis using a pe- 

rturbation method up to second order under the 

assumption of small log-conductivity variance. 

The effective conductivity is found as a semi- 

analytic form depending only on the anisotropy 

ratio, defined as the ratio of two integral scales, 

and the variance of the log-conductivity, both of 

which are hydrogeologic properties of the me- 

dium, making the effective conductivity a true 

intrinsic property. 

Results with anisotropic Gaussian correlation 

function, where the anisotropy is manifested in 

different directional integral scales, are obtained 

by numerical integration. Second order solutions 

indicate that the effective conductivity of an 

anisotropic medium has upper and lower bounds 

of arithmetic and harmonic mean conductivities 

and may be applied for variances of less than two 

and the effective hydraulic conductivity results 

reduce to the classical case of an isotropic heter- 

ogeneity when the anisotropic ratio is one. 

Effective hydraulic conductivity results obtain- 

ed in this study can be used in estimating the 

representative block hydraulic conductivities of 

anisotropic media in numerical studies of groun- 

dwater flow and solute transport. Effective hy- 

draulic conductivity characteristics can also be 

used in the inverse sense, in that measurements of 

bulk hydraulic properties may tell us something 

about the smaller scale heterogeneity. For exam- 

ple, anisotropy determined from aquifer tests can 

be used in conjunction with results such as that 

shown in Fig. 2 to estimate the ratio of the 

correlation scales. 

The assumption of ergodicity is implicit in the 

stochastic approach used in this study. We are 

assuming that flows in an ensemble of aquifers 

with the assigned statistical properties approxi- 

mate the real field situation, which involves flow 

in a single heterogeneous anisotropic aquifer. 

This assumption will be reasonable only if the 

scale of the flow system is large compared with 

the correlation scale of the aquifer (Lumley and 

Panofsky, 1964). Therefore the effective hydraulic 

conductivity developed above is meaningful only 

when the overall scale of the problem is large 

compared to the correlation scale of the hydraulic 

conductivity. 

References  

Dagan, G., 1987, "Theory of Solute Transport 

in Groundwater," Ann. Rev. Fluid Mech, Vol. 19, 

pp. 187--215. 

Dagan, G., 1987, Flow and Transport in Porous 

Formations, p. 465, Springer-Verlag. 

Deng, F. W. and Cushman, J.H., 1998, "Hig- 

her-order Corrections to the Flow Velocity 

Covariance Tensor, Revisited," Water Resour. 

Res., Vol. 34, pp. 103~ 106. 

Freeze, R. A., 1975, "A Stochastic Conceptual 

Analysis of One-dimensional Groundwater Flow 

in Nonuniform Homogeneous Media," Water 

Resour. Res., Vol. 11, pp. 725--741. 

Friedman, S. P. and Seaton, N.A.,  1996, "On 

the Transport Properties of Anisotropic Network 

of Capillaries," Water Resour. Res., Vol. 23, 

pp. 339~437. 

Gelhar, L.W., 1993, Stochastic subsurface 

hydrology, p. 385, Prentice Hall. 

Copyright (C) 2003 NuriMedia Co., Ltd. 



A Study on the Effective Hydraulic Conductivity of  an Anisotropic Porous Medium 965 

Gelhar, L. W. and Axness, C. L., 1983, "Three- 

dimensional Stochastic Analysis of Macrodisper- 
sion in Aquifers," Water Resour. Res., Vol. 19, 
pp. 161--180. 

Hoeksema, R.J. and Kitanidis, P.K., 1984, 
"An Application of the Geostatistical Approach 
to the Inverse Problem in Two-dimensional 
Groundwater Modeling," Water Resour. Res., 
Vol. 20, pp. 1021- 1029. 

Joo, Y., Fontinich, A. and Dhir, V. K., 1998, 
"Remediation of Contaminated Soil with Diesel 
by Soil Venting Technique," K S M E  Int. J., 

Vol. 12, pp. 1174-- 1183. 
Lumley, J. L. and Panofsky, H.A., 1964, The 

Structure o f  Atmospheric Turbulence, p. 239, 
John Wiley. 

Naff, R. L., 1978, "A Continuum Approach to 
the Study and Determination of Field Longitu- 
dinal Dispersion Coefficients," Ph. D. disserta- 
tion, N.M. Inst. of Mining and Tech., p. 176, 
Socorro. 

Rubin, Y. and Dagan, G., 1988, "Stochastic 
Analysis of Boundary Effects on Head Spatial 
Variability in Heterogeneous Aquifers, 1. Con- 
stant Head Boundaries," Water Resour. Res., 

Vol. 24, pp. 1689--1697. 
Salandin, P. and Rinaldo, A., 1990, "Numerical 

Experiment on Dispersion in Heterogeneous 
Porous Media," Computational Methods in Su- 

bsurface Hydrology (ed. G. Gambolati et al.) 
p. 575, Springer-Verlag. 

Copyright (C) 2003 NuriMedia Co., Ltd. 




